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What we gonna do?
-outline-
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Probability space

Probability space : (Ω,A,P)

Ω : Sample space ("l’univers"), set of possible outcomes
A : σ-algebra (σ-field), events (particular set of events)
P : a probability measure fonction ; P : A → [0, 1]

Ω : all possibilities, A : how to combine them, P : gives the
values in [0, 1] of the possible combination that A describes ;
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Rules σ-algebra follow

Let (Ω,A,P) be our probability space then :
1 ∅ ∈ A
2 A ∈ A ⇒ Ω\A ∈ A (we will denote Ω\A by A)

3 n ∈ N, (A1, ....,An) ∈ An ⇒
n⋃

i=1
Ai ∈ A
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Rules the probability measure follow

Let (Ω,A,P) be our probability space then :
1 A ∈ A,P(A) ∈ [0, 1]

2 P(Ω) = 1

3 n ∈ N, (A1, ....,An) ∈ An ⇒ P
( n⋃

i=1
Ai

)
=

n∑
i=1

P(Ai )
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
The famous heads or tails example

1 We toss a coin once and so :

Ω = {”heads”, ”tails”}or{0,1}
A = {∅, 0, 1,Ω}
P : {∅, 0, 1,Ω} → [0, 1]

Based on a wonderful experience, you can write, for instance :
P(0) = P(1) = 0.5 or P(0) = 0.25 and P(1) = 0.75 if the coin
is biased

2 We toss a coin twice :
Ω = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}
A = P(Ω) = T ((0, 0), (0, 1), (1, 0), (1, 1))
P : P(Ω)→ [0, 1]
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Conditional probability

Let (Ω,A,P) be our probability space, (A,B) ∈ A2 / P(B) > 0,
we define :

P(A|B) = P(A∩B)
P(B)

Now P(B) > 0 and P(A) > 0, A and B are independent if and only
if :

P(A|B) = P(A)⇔ P(B|A) = P(B)
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Bayes Formula

Bayes formula (extended version): Let (Ω,A,P) be our
probability space, let I ⊂ N, (Bi )i∈I be a family of events, such as :

(Bi )i∈I / ∀(i , j) ∈ IxI\{i}, Bi ∩ Bj = 0⋃
i∈I

Bi = Ω

∀i ∈ I,P(Bj) > 0
then :P(A) =

∑
i∈I

P(A|Bi )P(Bi )
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Random variables

Random variable (or stochastic variable) : Let (Ω,A,P) be a
probability space, let (E , E) be a measurable space, a (E , E)-valued
random (or stochastic) variable is a function X : Ω→ E which is
(A, E)-measurable.

To be clear, based on the heads and tails example, we define a
random variable X such as :

P(”heads”) = P(X = 1) P(”tails”) = P(X = 0)

But this is a shorthand we always use ! Remember this means
X (”heads”) ∈ A, and particularly, X (”heads”) = 1
Think about the "tossing twice" experience ....
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Probability distribution of a random variable

Probability distribution : Let (Ω,A,P) be a probability space, let
X be (E , E)-valued random variable, the probability distribution of
X is the measure PX defined on (E , E) such as for any Ei ∈ E :
PX (Ei ) = P(X−1(Ei )) = P(X ∈ Ei )

To be clear, a probability distribution associated to each values of
the space E a value between [0, 1] ("1 probability") between such
as it reflects the situation existing in Ω.
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Probabilities Finite Markov Chain Continuous Markov Chain

A few notes on probabilities
Stochastic process

Stochastic process (or random process) : Let (Ω,A,P) be a
probability space, let (E , E) be a measurable space, and T be a
totally ordered set a stochastic process is collection of random
variables ordered by T : {Xt : t ∈ T}.

For instance, if we toss a coin, X is then our random values which
takes values in {0, 1}. We can then toss the coin each fucking
minute and register each result, we so have to define random
process indexed by the time (here discrete). (Xt , t ∈ N).
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
States space

- S a set of states, Card(S) = k with k ∈ N∗,
- S and Nk−1 (or N∗k) are isomorphic,

Examples :
. Traffic lights : S = {”red”, ”orange”, ”green”}, S and
{0, 1, 2} are isomorphic.

. Biogeography:
S = {"Sp1 on the island", "Sp1 not on the island"}

. Population dynamics : S = N
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
Stochastic process (random process)

- Let T be a totally ordered set and t ∈ T,
- (Xt)t∈T is a (S-values) stochastic process then : ∀t ∈ T, Xt
is a random variables of states space S.

Examples :
. Tossing a coin each 10 seconds (Xt)t∈N records the results
. Population dynamics : (Xt)t∈R+ records the number of
individuals
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
Markov process

Based on the work of Andreï Andreïevitch Markov (1856-1922) we
define :

- A finite markov process (Xt)t∈N is a finite stochastic process
such that, ∀t > 0 :

P

 t⋂
j=0

Xj

 > 0

P

Xt+1 = i |
t⋂

j=0
Xj

 = P(Xt+1 = i |Xt)

The latter conditional probability is called a transition probability.
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
Markov Chain

A Finite Markov Chain is a finite Markov process for which the
transition probabilities do not depend on t.

- A finite Markov process can also be referred as a "no memory
finite stochastic process"

- You can also find "homogenous finite Markov chain"
- I wrote the definitions above according to Kemeny, J. G., and
Snell, J. L. (1960). Finite markov chains (Springer., Vol. 40,
p. 210).
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
Extended definition : Markov chain of order m > 1

m ∈ N∗, a finite Markov chain of order (a m-memory process) is a
finite stochastic process such that :

∀t > m

P

 t⋂
j=0

Xp

 > 0

P

Xt+1 = i |
n⋂

j=0
Xp

 = P

Xt+1 = i |
n⋂

j=t−m+1
Xj


the latter does not depend on t
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
About the next sections

- MC stands for Markov Chain
- we consider solely finite MC (order 1)
- the increment is then 1 but can be regarded as dt
- main question : ∀(i , t) ∈ Nk−1 × N, P(Xt = i) =?

For such MC :
- a MC can be regraded as random walk on a graph
- All we know about the MC is given by the transition
probabilities
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
Transition matrix

- The transition matrix of a Markov chain is defined by :

P = (pi ,j , (i , j) ∈ N2
k−1); pi ,j = P(Xt+1 = j |Xt = i)

- Also called a stochastic matrix, the sum of each line provides
1.

- This is directly provided by the total probability formula :

k−1∑
j=0

pi ,j =
k−1∑
j=0

P(Xt+1 = j |Xt = i) = 1
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Probabilities Finite Markov Chain Continuous Markov Chain

Markov chain you’ve said !
describing a Markov Chain

A finite stochastic process Xt,t∈N is a Markov Chain with an initial
distribution Λ0 and a transition matrix P : pi ,j , (i , j) ∈ N2

k−1 if :
- ∀i ∈ Nk−1, P(X0 = i) = λi ,0

- ∀t > 0, P(Xt+1 = j |Xt = i) = pi ,j

Then we describe the transition between n and n + 1 as follows :

P(Xt+1 = i) =
k−1∑
i=0

pi ,jP(Xt = j)

We can show :

∀n > 0,Λt = Λ0Pt
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Probabilities Finite Markov Chain Continuous Markov Chain

Few properties of MC
Ergotic Markov chain

- An irreducible (or ergotic) finite MC is a finite MC with only 1
closed communicative class, it is possible to go from every
state to every state

- A regular finite MC is an ergotic MC such that : ∃k | Pk > 0

Theorem :
- A MC with a P transition matrix is ergotic iff the eigen value
1 is simple and the only eigen value whose module is one

- Its limiting distribution π is given by the unique normalized
left side eigen vector associated

- This also provides the portion of time spent in each states
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Probabilities Finite Markov Chain Continuous Markov Chain

Continuous Markov Chain

- The ordered set is now continuous
- ....
- Work in progress
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