Use R to visualize the results of your meta-analysis

Kevin Cazelles, University of Guelph & Steve Vissault, Université de Sherbrooke

October 29th, 2017

R to visualize your data

Why visualize your data?


  • many pieces of information at one glance
  • explore your data
  • make your point

Data visualization

Why use R to do it?

Workflow



          ## Why use R to do it? ### Workflow

           

Why use R to do it?

Different valuable options

  • The gridGraphics package
  • base VS ggplot2
  • Web-based graphs

Why use R to do it?

Why use R to do it?

Why use R to do it?

Few lines of codes

library(raster)
library(mapview)
elvBtn = getData('alt', country='BTN', path='./assets/')
mapview(elvBtn)

Why use R to do it?

Few lines of codes

Why use R to do it?

A large community

Why use R to do it?

Common plots used in meta-analyses

What do we want/need to visualize?

Effect Size (ES)

  • log risk ratios,
  • log odds ratios,
  • …,
  • non-standard ES

Studies

  • by author
  • by region
  • by species

Effect size – Funnel plot

Effect size – Forest plot









Vellend et. al 2013

Effect size – Forest plot

Effect size – Radial plot

Effect size – L’Abbé plot

Effect size – relevant categories

Roca et al. 2016

Number of Study & effect size

Vellend et al. 2013

Number of Study & geography


Vellend et al. 2013

Common plots used in meta-analyses with R

R packages for meta-analyses

  • click here

  • install.packages("ctv"); ctv::install.views("MetaAnalysis")

Meta vs Metafor – briefly

Meta vs Metafor – briefly

Meta vs Metafor – support

Meta – workflow

  • metabin()
Arguments:

 event.e: Number of events in experimental group.
     n.e: Number of observations in experimental group.
 event.c: Number of events in control group.
     n.c: Number of observations in control group.

Meta – workflow

  • metabin()
  • metagen()
Arguments:

      TE: Estimate of treatment effect.
    seTE: Standard error of treatment estimate.

Meta – workflow

meta:

- `metabin()` / `metagen()`
- `funnel`, `forest`, ...
install.packages('meta')
library(meta)
data(Olkin95)
# ?Olkin95
meta1 <- metabin(event.e, n.e, event.c, n.c,
                  data=Olkin95, subset=c(41,47,51,59),
                  sm="RR", method="I",
                  studlab=paste(author, year))

forest(meta1)

Meta – workflow

author year event.e n.e event.c n.c
Fletcher 1959 1 12 4 11
Dewar 1963 4 21 7 21
Lippschutz 1965 6 43 7 41
European 1 1969 20 83 15 84
European 2 1971 69 373 94 357
Heikinheimo 1971 22 219 17 207

Meta – workflow

Metafor – workflow

Metafor – workflow

  • Calculate effect size: escalc()

  • Perform analysis: rma()

  • Plots: funnel(), forest(), labbe(), …

Metafor – example

install.packages('metafor')
library('metafor')

Metafor – example

r<-c(0.5,0.6,0.4,0.2,0.7,0.45)
n<-c(40,90,25,400,60,50)
studynames<-c(1,2,3,4,5,6)
b<-data.frame(r,n,studynames)
eszcor <- escalc(measure="ZCOR", ri=r, ni=n, data=b)
FEmodel<-rma(yi=yi, vi=vi, data=eszcor, method="FE")
#forest plot fixed-effect model: pooled effect size,
forest(FEmodel)

Metafor – example

r<-c(0.5,0.6,0.4,0.2,0.7,0.45)
n<-c(40,90,25,400,60,50)
studynames<-c(1,2,3,4,5,6)
b<-data.frame(r,n,studynames)

Metafor – example

knitr::kable(head(b))
r n studynames
0.50 40 1
0.60 90 2
0.40 25 3
0.20 400 4
0.70 60 5
0.45 50 6

Metafor – example

eszcor <- escalc(measure="ZCOR", ri=r, ni=n, data=b)
class(eszcor)
R>>  [1] "escalc"     "data.frame"

Metafor – example

FEmodel<-rma(yi=yi, vi=vi, data=eszcor, method="FE")
class(FEmodel)
R>>  [1] "rma.uni" "rma"

Metafor – example

forest(FEmodel)

Metafor – example

forest(FEmodel,transf=transf.ztor)

Metafor – example

funnel(FEmodel, yaxis="vinv", main="Inverse Sampling Variance")

Pros and Cons

Pros

  • do everything for you
  • good-looking plots with few lines of code

Cons

  • standard ES
  • not fully customizable
  • not for ecologists?

Custom your plot

graphics or grid?

Few tips

  • par()
  • plot(), barplot(), funnel()

npt <- 15
vecX <- 1:npt
vecY <- runif(length(vecX))

plot(vecX, vecY)

plot(vecX, vecY, xlim=c(0,15)+.5)

plot(vecX, vecY, xlim=c(0,15)+.5, pch=19)

plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2")

plot(vecX, vecY, xlim=c(0,15)+.5, pch='S', col="#0f7aa2")

plot(vecX, vecY, xlim=c(0,15)+.5, type='h', col="#0f7aa2")

plot(vecX, vecY, xlim=c(0,15)+.5, type='h', col="#0f7aa2", lwd=12)

par(lend=2); plot(vecX, vecY, xlim=c(0,15)+.5, type='h', col="#0f7aa2", lwd=12)

par(las=1)
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2")

par(las=1)
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2")
abline(v=c(0.5,15.5), lty=2)

par(las=1, xaxs='i')
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2")
abline(v=c(0.5,15.5), lty=2)

vCol <- rep(1, npt)
vCol[c(2,5,8,9)] <- 2
vSize <- 1+2*runif(npt)

par(las=1, xaxs='i')
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol])

par(las=1, xaxs='i')
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize)

par(las=1, xaxs='i')
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize)
abline(lm(vecY~vecX), col=2)

par(las=1, xaxs='i', mfrow=c(2,2))
for (i in 1:4){
  plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize)
  mtext(3, at=2, text=LETTERS[i], line=.5, cex=1.2)
}

par(las=1, xaxs='i', mfrow=c(2,2), mar=c(2,2,2,1), oma=c(3,3,0,0), mgp=c(1,0.8,0))
##--
for (i in 1:4){
  plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol],
    cex=vSize, ann=FALSE)
  mtext(3, at=1, text=LETTERS[i], line=.5, cex=1.2)
}
##--
mtext(1, text='Time', outer=T, line=1, cex=1.4)
par(las=0)
mtext(2, text='Variable', outer=T, line=1, cex=1.4)

layout(matrix(c(2,1,0,3), 2), widths=c(1,.5), heights=c(.5,1))
layout.show(3)

layout(matrix(c(1,2,0,3), 2), widths=c(1,.5), heights=c(.6,1))
par(mar=c(2, 4, 2, 1), las=1)
for (i in 1:3){
  plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol],
    cex=vSize, ann=FALSE)
  mtext(3, at=1, text=LETTERS[i], line=.5, cex=1.2)
}

Example funnel plot

funnel(FEmodel, yaxis="vinv", main="Inverse Sampling Variance")

Example funnel plot

par(las=1, mar=c(5,6,4,1), mgp=c(4,1,0))
funnel(FEmodel, yaxis="vinv", main="Inverse Sampling Variance", col="#0f7aa2",
back='white')
legend('topright', legend='mypoints', pch=19, col="#0f7aa2", bty='n')

Example funnel plot

Questions?

Let’s practice

Reproduce figures from….

1- Roca et al. 2016

2- Vellend et al. 2013

  • Paper is available on line

  • Data available on line as well Dataset S1

Roca et al. 2016

Figure 1 from Roca et al. 2016

Vellend et al. 2013

Figure S2 Vellend et al. 2013

Roca et al. 2016 – Solution

Roca et al. 2016 – Solution



Roca et al. 2016


KevCaz

Roca et al. 2016 – Solution



Roca et al. 2016


Amanda Young

Figure S2 Vellend et al. 2013 – Solution

Find the R script I created to reproduce this figure here

Figure S2 Vellend et al. 2013 – Solution



Vellend et al. 2013


KevCaz

Extra

Network of co-authors

To create the network that follows:

1- data available on Github;

2- R script available on Github.

Resources

Useful links

That’s all folks